Telegram Group & Telegram Channel
Combining Induction and Transduction for Abstract Reasoning [2024]

В прошлом посте про ARC я расссказал про решение, которая даёт 62% в комбинации с так называемым синтезатором программ. Сегодня мы поговорим о том, что это за зверь.

Авторы рассматривают 2 подхода к решению ARC:

1) Transduction - это когда у нас есть нейросеть, получающая на вход тренировочные пары вход-выход + тестовый вход и предсказывающая тестовый выход - такую модель мы как раз и видели в тот раз.
2) Induction - получая на вход тренировочные пары вход-выход, мы генерируем программу на питоне, превращающую вход в выход. Затем мы применяем её на тестовом входе

Итак, начнём с того, как авторы собирали датасет для Induction-модели.

Сначала авторы собирают вручную так называемый seed-датасет - это 100 ARC-задач, для которых вручную написаны программы на питоне, а также текстовые описания этих задач. Далее GPT-4 просят наплодить большой датасет синтетических задач, рекомбинируя описания и код изначальных ста.

На таких данных можно делать нечто похожее на обучение задачкам по программированию: дообучаем LLM по задаче гененировать питон код, а во время инференса генерируем много программ-кандидатов, которые потом можно фильтровать, проверяя на тренировочных парах.

Интересный сюжетный поворот - задачи, которые решают Transduction и Induction-модели, даже если их учить на одних и тех же сетах задач, пересекаются далеко не полностью. В самом топовом запуске Induction набирает 38%, Transduction 43%. а их ансамбль аж 57%. Авторы проверили, что это не результат случайной инициализации.

Ансамблировать их, кстати, можно и вслепую - если Induction-модель не сгененировала ни одну программу, которая подходит под тренировочные примеры, мы в качестве решения выдаём Transduction-кандидата.

Интересно понять - откуда берётся такое отличие в решаемых задачах у 2 подходов, даже если их учат на одном и том же? Немножко пролить на это свет помогает Ablation на задачах из ConceptARC - упрощённом датасете, в котором применяется одна "абстрактная концепция".

Например, программный синтезатор сильно лучше справляется с извлечением объектов и подсчётом, тогда как трансдуктор лучше в раскрасках и чём-то подобном. Примеры задач, приведённые автором, я прикрепил к посту.

Статья интересная, правда, есть те же опасения по поводу утечки задач через эту самую синтетику. Маленькая версия их модели, которую они засабмитили в настоящий тест, дала 18% через Transduction и только 4% через Induction (ансамбль дал 19%, SOTA = 55.5%) - это может говорить о том, что базовые операции сильно отличаются у скрытого теста и так просто справиться с ним не выйдет. Будем следить за развитием событий.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/239
Create:
Last Update:

Combining Induction and Transduction for Abstract Reasoning [2024]

В прошлом посте про ARC я расссказал про решение, которая даёт 62% в комбинации с так называемым синтезатором программ. Сегодня мы поговорим о том, что это за зверь.

Авторы рассматривают 2 подхода к решению ARC:

1) Transduction - это когда у нас есть нейросеть, получающая на вход тренировочные пары вход-выход + тестовый вход и предсказывающая тестовый выход - такую модель мы как раз и видели в тот раз.
2) Induction - получая на вход тренировочные пары вход-выход, мы генерируем программу на питоне, превращающую вход в выход. Затем мы применяем её на тестовом входе

Итак, начнём с того, как авторы собирали датасет для Induction-модели.

Сначала авторы собирают вручную так называемый seed-датасет - это 100 ARC-задач, для которых вручную написаны программы на питоне, а также текстовые описания этих задач. Далее GPT-4 просят наплодить большой датасет синтетических задач, рекомбинируя описания и код изначальных ста.

На таких данных можно делать нечто похожее на обучение задачкам по программированию: дообучаем LLM по задаче гененировать питон код, а во время инференса генерируем много программ-кандидатов, которые потом можно фильтровать, проверяя на тренировочных парах.

Интересный сюжетный поворот - задачи, которые решают Transduction и Induction-модели, даже если их учить на одних и тех же сетах задач, пересекаются далеко не полностью. В самом топовом запуске Induction набирает 38%, Transduction 43%. а их ансамбль аж 57%. Авторы проверили, что это не результат случайной инициализации.

Ансамблировать их, кстати, можно и вслепую - если Induction-модель не сгененировала ни одну программу, которая подходит под тренировочные примеры, мы в качестве решения выдаём Transduction-кандидата.

Интересно понять - откуда берётся такое отличие в решаемых задачах у 2 подходов, даже если их учат на одном и том же? Немножко пролить на это свет помогает Ablation на задачах из ConceptARC - упрощённом датасете, в котором применяется одна "абстрактная концепция".

Например, программный синтезатор сильно лучше справляется с извлечением объектов и подсчётом, тогда как трансдуктор лучше в раскрасках и чём-то подобном. Примеры задач, приведённые автором, я прикрепил к посту.

Статья интересная, правда, есть те же опасения по поводу утечки задач через эту самую синтетику. Маленькая версия их модели, которую они засабмитили в настоящий тест, дала 18% через Transduction и только 4% через Induction (ансамбль дал 19%, SOTA = 55.5%) - это может говорить о том, что базовые операции сильно отличаются у скрытого теста и так просто справиться с ним не выйдет. Будем следить за развитием событий.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/239

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Knowledge Accumulator from tr


Telegram Knowledge Accumulator
FROM USA